🎯 Adventure 13 — Activity 1 (Solution)

Completed derivatives and tables

1) f(x) = x²

f′(x)= 2x    f″(x)= 2

xff′f″
-24-42
-11-22
0002
1122
2442

(0,0) is a minimum because f′(0)=0 and f″(0)>0.

2) f(x) = −x²

f′(x)= −2x    f″(x)= −2

xff′f″
-2-44-2
-1-12-2
000-2
1-1-2-2
2-4-4-2

(0,0) is a maximum because f′(0)=0 and f″(0)<0.

3) f(x) = x³

f′(x)= 3x²    f″(x)= 6x

xff′f″
-2-812-12
-1-13-6
0000
1136
281212

(0,0) is an inflection point because the concavity changes (f″ changes sign).

4) f(x) = −x³

f′(x)= −3x²    f″(x)= −6x

xff′f″
-28-1212
-11-36
0000
1-1-3-6
2-8-12-12

(0,0) is an inflection point because the concavity changes (f″ changes sign).

Graphs for x^2, -x^2, x^3, -x^3