x², −x², x³, −x³f, f′, and f″ at x = −2, −1, 0, 1, 2.
Then decide: does the point (0,0) give a maximum, minimum, or an inflection point?
Compute derivatives:
f′(x) =
f″(x) =
| x | f | f′ | f″ |
|---|---|---|---|
| -2 | |||
| -1 | |||
| 0 | |||
| 1 | |||
| 2 |
f′(x) =
f″(x) =
| x | f | f′ | f″ |
|---|---|---|---|
| -2 | |||
| -1 | |||
| 0 | |||
| 1 | |||
| 2 |
f′(x) =
f″(x) =
| x | f | f′ | f″ |
|---|---|---|---|
| -2 | |||
| -1 | |||
| 0 | |||
| 1 | |||
| 2 |
f′(x) =
f″(x) =
| x | f | f′ | f″ |
|---|---|---|---|
| -2 | |||
| -1 | |||
| 0 | |||
| 1 | |||
| 2 |
x², we have a ________ at (0,0) because f′(0)= ___ and f″(0) is ________.−x², we have a ________ at (0,0) because f′(0)= ___ and f″(0) is ________.x³, we have an ________ at (0,0) because f″(0)= ___ and the concavity changes.−x³, we have an ________ at (0,0) because f″(0)= ___ and the concavity changes.